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FIG. 2. Heat transfer around a circular cylinder to a 
cross-flow of air. 

APPLICATlON IN HOT FILM ANEMOMETRY 

For measurements of turbulence, the local slope of the 
calibration curve of a hot wire anemometer is commonly 
used to compute such quantities as turbulence intensities, 
Reynolds stresses, etc. The calibration curve is fitted to the 
calibration data either graphi~lly or with the help of a 
statistical criterion. The latter involves the finding of at least 
two out of the three constants, A, B, and n, of the widely 
used empirical formula 

Nu= A+B.Re”. (7) 

Even so, it is doubtful that the fitted equation gives the 
correct first deviatives over the entire range of interest. 
Therefore, the graphical method is generally favored. How- 
ever, the accuracy of the graphical method depends heavily 
on the individual’s personal judgment and experience; 
moreover, the graphical method cannot be used to evaluate 
a large amount of data with the help of a computer. For 
computer cafculations, a theoretical equation representing 
the essential behavior of the hot wire anemometer, with as 

few undetermined local constants as possible, is needed. It is 
believed that the present theory through equation (6) satisfies 
this need. 

The deviation of the calibration curve of a hot wire 
anemometer from time to time is generally attributed to the 
contamination of impurities on the wire surface. It can be 
regarded as a coating of certain thickness. In equation (6). 
E, b and A are given by equations (2) (3) and (5). The local 
constant C can be found by best fit of equation (6) to the 
calibration data. 

This method has been actually used to process the data 
obtained in the mercury channel described in [Z]. The 
results were comparatively better than those obtained with 
the statistical method. 
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NOMENCLATURE 

h, step height; 
L, entrance height; 
N% max, maximum value of local Nusselt number based 

on hydraulic diameter; 
NUL, rnsX* maximum value of local Nusselt number, 

%.XLI~ ; 
Red, Reynolds number based on hydraulic diameter; 
Rer, Reynolds number, uL/v; 
qw wall heat flux; 
u, Aow velocity at entrance; 
Xs, overall stat1 length. 

Greek symbols 

a, heat-transfer coefficient; 
1, thermal conductivity; 
V, kinematic viscosity. 

INTRODUCTION 

IN A FLOW region with an abruptly enlarged area change 
of a tube or of a duct, it is well known that the separated 
and the reattached regions occur. Especially, heat-transfer 
problems for such a flow geometry have been studied by 
several investigators. For a circular cross-sectional duct, 
Krall and Sparrow [l] and Ede et at. [2] have reported 
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their results with water under the condition of constant heat 
flux. On the other hand, for a rectangular cross-sectional 
duct, Filetti and Kays [33 have performed their experiments 
with air under the condition of constant wall temperature 
for two test configurations, h/L = 0.5625 and h/L = 1.05. 
They reported that the heat-transfer rate at a reattachment 
point was dependent on step height ratio. However, the 
applicability of their proposed empirical relations describing 
N&t, max vs h/L for a wide range of step height has not yet 
been clarified. 

The purpose of this investigation is to determine the 
effect of step height on heat-transfer rate at a reattachment 
point, for a rectatigular cross-sectional duct. Especially, the 
maximum Nusselt number is discussed by correlating it with 
a stall length. The Row geometry is shown in Fig. 1, and 
the test fluid is air. The heat-transfer characteristics at the 
reattachment point are examined for seventeen kinds of step 
height ratio h/L, which is varied between 0.035 and 7.0, 
under the condition of constant heat flux. Reynolds number 
ranges approximately from 4 x 10’ to 8 x 104. 

EXPERIMENTAL APPARATUS 

Essential components of the apparatus consist of a con- 
traction, steps and heated plates, which are installed in the 
test section of an open circuit tunnel. The cross-sectional 
area and the length of the test section are 150 x 150mm 
and 600 mm, respectively. Flow velocity at the entrance of 
the test section is measured by a Chattock manometer con- 
nected with a Pitot-static tube. Heating of the plates is 
accomplished by applying an electric current to thirty-six 
parts of nichrome wire embedded in the plates, thus pro- 
ducing a uniform heat flux over the plates. Wall temperatures 
are measured by 0.3 mm dia C-C thermocouples situated at 
24 longitudinal stations. Assuming that the maximum heat 
transfer is to occur at the reattachment point, stall le&th 
is estimated from the temperature distribution of the &all. 
Two-dimensionality of flow in the reattachment region is 
examined with thermocouples and confirmed by a flow 
visualization using the oil film method. 

RESULTS AND CONCLUSIONS 

The heat-transfer coefficient in this note is defined as the 
following expression on account of the difficulty of mea- 
suring a bulk temperature in a separated region. 

a = %v/(&v - G) (1) 

where t, and t, are the wall and the center-line fluid 
temperatures, respectively. 

Krall and Sparrow obtained a relation as Nu~,,,~~ _ 
Re:j3, where Nu,, mBx and Re, are based on a hydraulic 
diameter of d, for a tube flow. On the other hand, for a 
rectangular duct flow, Filetti and Kays presented two re- 
lations as NIQ,,,, _ R&689 for a short stall and as 
N&i, max * Rej,593 for a long stall. But, if the discussion 
is focussed only on the effect of step height on maximum 
Nusselt number, one might realize the exponent of Reynolds 
number was independent of step height. For instance, a 
relation between maximum Nusselt number and step height 
is given by Filetti and Kays for a short stall as 

NUB, max = [0.124+0.101(2~/L)]Re~6s9. (2) 

Dividing equation (2) by R@, the following expression is 
obtained. 

Nu,, msJRed2i3 = [0.124+0.101(2h/L)] Re~.oZZ. (3) 

From this expression, it could be easily understood that 
the slope of iVUd, maJRe:i3 against (2h/L) is not affected 
by the exponent of Reynolds number in case of logarithmic 
plotting. In this note, the exponent of Reynolds number 
is adopted as 2/3. 

Figure 1 shows NuL, max obtained for h/L = 0.035 - 7.0. 
However, for the long stall, data are confined in a relatively 
small range due to the length restriction of the experiments 
apparatus. From these results, it can be seen that the 
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FIG. 1. Correlation between step height and maximum 
Nusselt number. 

maximum heat-transfer rate for a short stall is greater than 
that for a long stail. Further, the deviation between both 
the m~imum heat-transfer rates becomes larger with in- 
creasing step height. As the experimental conditions per- 
formed by Filetti and Kays are different from authors’, the 
comparison between both results may be impossible in the 
strict sense. As a reference, only the slopes of their data are 
shown in Fig. 1. As will be seen in this figure, the slopes 
of their data agree well with the present results for 
0.5625 < h/L < 1.05. However, for a wider range of h/L, it 
is clear that their extrapolated predictions shown in Fig. 1 
as dotted lines are not enough. These discrepancies seem 
to be resulted from an assumption in their work that 
maximum Nusselt number is to vary linearly with step 
height. Consequently, it may be natural that a linear re- 
lationship between maximum Nusselt number and step 
height does not hold good in a wider range of h/L. 

It is ascertained that the stall lengths obtained in the 
present investigation agree well with the results For double 
step configurations by Abbott and Kline [S]. The com- 
parison of these results with those in Fig. 1 clarifies the 
fact that there is a similar tendency between the maximum 
heat-transfer rates against step height and the stall lengths 
against it. 
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FIG. 2. Correlation between stall length and maximum 
Nusselt number. 
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The aforementioned experimental results suggest that 
NuL, max might be related with stall length. Figure 2 shows 
the plotted result of Nu,, ,,,,JRei13 vs .xR/L. It may be con- 
cluded that the data are well correlated by the following 
expression. 

NU L, max = [0.446-0.238(~,/L)~.““] Kr: ‘. (4) 

In Fig. 2, the experimental data by Krall rt trl. and Filetti 
et ul. are compared with authors’ results. The slopes of 
Filetti’s results show a good agreement with authors’ in 
the limited range of xR/L. It is interesting to note that 
Nu~,,_~ is approximated by (4) without any distinction of 
short or long stall. In conclusion, NUT,, maX is solely dependent 
on a stall length, xR/L, and decreases with increasing stall 
length. The accuracy of NUL, m.,X estimated by the empirical 
relation (4) is within k 10”); for 4 x IO3 < RP[. i 8 x 10“ 
and 0.2 < .YJL i 16.0. 
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NOMENCLATURE 

r, unknown function ; 
D, diffusion constant; 

i, imaginary unit; 

0, angular frequency; 

G, Green’s function; 

Z,, 
distance in the two dimensional plane; 

_ 1 keio 
Kelvin functions of order zero; 

Ii,? > unity vector normal to the boundary; 

6’. unknown boundary function. 

I. INTRODUCTION 

WHEREAS the integral equation technique has been widely 
used for potential and electromagnetic scattering problems 
[I-S], this technique is not commonly known for other 
applications. The basic idea for using an integral equation 
consists in the numerical solution of the problem. A two 
dimensional partialdifferentialequation will be replaced by a 
one dimensional integral equation. This fact saves memory 
storage and computation time. The programming of the 
problem is then also simplified. 

The transient analysis of a thermal diffusion problem by 
an integral equation has been performed by Shaw [9]. 
Similar methods have been applied for a drift-diffusion 
problem [IO, 111. In this paper, an integral equation will be 
derived for the equation: 

DV’T = iwT (1) 

which describes the diffusion phenomenon in a two 
dimensional area S under AC conditions (i;.!it --t iu). 

2. INTEGRAL EQUATlOk 

In order to establish an integral equation for the equation 
(l), one has to know the Green’s function G of the problem. 
This function is a solution of: 

VZG - ‘; G = S(F) (2) 

in the infinite two dimensional plane. One can then use 
polar coordinates (r, 0) and by taking the circular symmetry 
into account, the e-dependence may be dropped. The 
Green’s function G depends only upon the distance r and is 
found to be: 

G(r) = & {kerO [r J(cu/D)] +i keio [r ,/(w/D)]} (3) 

where kero and keio are the Kelvin fun&ions of zeroth 
order [12]. 

The integral equation technique will now be outlined 
for the particular geometry presented on Fig. 1. The same 
method can be applied for arbitrary geometries. The 
boundary conditions are (Fig. 1): 

T= To on AA’ 

T=O on BB 

VT, 6. = 0 on AB and A’B’. (4) 

By using the y-independence of this problem the equation 
(1) can also be solved analytically, so that the numerical 
results can be compared with the exact analytical solution. 
In order to construct the integral equation, the solution 
T is written as: 

T(r) = 
i 

p(?‘)G( IF-- r’/)dC (5) 
c 

where p(r) is an unknown complex source function defined 
along the boundary C. Imposing the boundary conditions 
(4) on the proposed solution (5) yields : 

Q p(f’)G(I?-?J)dC’= & FEAA’ (6) 
c 

P 
p(r”)G(lf-?‘j)dC’= 0 FEBB (7) 

c 

ti.dC’=O reABandA’B (8) 


